Biogenic nitrogen oxide emissions from soils: impact on NOx and ozone over west Africa during AMMA (African Monsoon Multidisciplinary Analysis): observational study
نویسندگان
چکیده
Chemical and meteorological parameters measured on board the Facility for Airborne Atmospheric Measurements (FAAM) BAe 146 Atmospheric Research Aircraft during the African Monsoon Multidisciplinary Analysis (AMMA) campaign are presented to show the impact of NOx emissions from recently wetted soils in West Africa. NO emissions from soils have been previously observed in many geographical areas with different types of soil/vegetation cover during small scale studies and have been inferred at large scales from satellite measurements of NOx. This study is the first dedicated to showing the emissions of NOx at an intermediate scale between local surface sites and continental satellite measurements. The measurements reveal pronounced mesoscale variations in NOx concentrations closely linked to spatial patterns of antecedent rainfall. Fluxes required to maintain the NOx concentrations observed by the BAe-146 in a number of cases studies and for a range of assumed OH concentrations (1×106 to 1×107 molecules cm−3) are calculated to be in the range 8.4 to 36.1 ng N m−2 s−1. These values are comparable to the range of fluxes from 0.5 to 28 ng N m−2 s−1 reported from small scale field studies in a variety of non-nutrient rich tropical and sub-tropical locations reported in the review of Davidson and Kingerlee (1997). The fluxes calculated in the present study have been scaled up to cover the area of the Sahel bounded by 10 to 20 N and 10 E to 20 W giving an estimated emission of 0.03 to 0.30 Tg N from this area for Correspondence to: D. J. Stewart ([email protected]) July and August 2006. The observed chemical data also suggest that the NOx emitted from soils is taking part in ozone formation as ozone concentrations exhibit similar fine scale structure to the NOx, with enhancements over the wet soils. Such variability can not be explained on the basis of transport from other areas. Delon et al. (2008) is a companion paper to this one which models the impact of soil NOx emissions on the NOx and ozone concentration over West Africa during AMMA. It employs an artificial neural network to define the emissions of NOx from soils, integrated into a coupled chemistrydynamics model. The results are compared to the observed data presented in this paper. Here we compare fluxes deduced from the observed data with the model-derived values from Delon et al. (2008).
منابع مشابه
Nitrogen Oxide biogenic emissions from soils: impact on NOx and ozone formation in West Africa during AMMA (African Monsoon Multidisciplinary Analysis)
Nitrogen Oxide biogenic emissions from soils are driven by soil and environmental parameters. The relationship between these parameters and NO fluxes is highly non linear. A new algorithm, based on a neural network calculation, is used to reproduce the NO biogenic emissions in West Africa during the AMMA campaign, in August 2006. 5 It has been coupled in the surface scheme of a coupled chemistr...
متن کاملBiogenic nitrogen oxide emissions from soils – impact on NOx and ozone over West Africa during AMMA (African Monsoon Multidisciplinary Experiment): modelling study
Nitrogen oxide biogenic emissions from soils are driven by soil and environmental parameters. The relationship between these parameters and NO fluxes is highly non linear. A new algorithm, based on a neural network calculation, is used to reproduce the NO biogenic emissions linked to precipitations in the Sahel on the 6 August 2006 during the AMMA campaign. This algorithm has been coupled in th...
متن کاملChemical and aerosol characterisation of the troposphere over West Africa during the monsoon period as part of AMMA
During June, July and August 2006 five aircraft took part in a campaign over West Africa to observe the aerosol content and chemical composition of the troposphere and lower stratosphere as part of the African Monsoon Multidisciplinary Analysis (AMMA) project. These are the first such measurements in this region during the monsoon period. In addition to providing an overview of the tropospheric...
متن کاملBiogenic emissions of NOx from recently wetted soils over West Africa observed during the AMMA 2006 campaign
متن کامل
Impact of West African Monsoon convective transport and lightning NOx production upon the upper tropospheric composition: a multi-model study
Within the African Monsoon Multidisciplinary Analysis (AMMA), we investigate the impact of nitrogen oxides produced by lightning (LiNOx) and convective transport during the West African Monsoon (WAM) upon the composition of the upper troposphere (UT) in the tropics. For this purpose, we have performed simulations with 4 state-ofthe-art chemistry transport models involved within AMMA, namely MOC...
متن کامل